Finding All Maximal Cliques in Very Large Social Networks
نویسندگان
چکیده
The detection of communities in social networks is a challenging task. A rigorous way to model communities considers maximal cliques, that is, maximal subgraphs in which each pair of nodes is connected by an edge. State-of-the-art strategies for finding maximal cliques in very large networks decompose the network in blocks and then perform a distributed computation. These approaches exhibit a trade-off between efficiency and completeness: decreasing the size of the blocks has been shown to improve efficiency but some cliques may remain undetected since high-degree nodes, also called hubs, may not fit with all their neighborhood into a small block. In this paper, we present a distributed approach that, by suitably handling hub nodes, is able to detect maximal cliques in large networks meeting both completeness and efficiency. The approach relies on a two-level decomposition process. The first level aims at recursively identifying and isolating tractable portions of the network. The second level further decomposes the tractable portions into small blocks. We demonstrate that this process is able to correctly detect all maximal cliques, provided that the sparsity of the network is bounded, as it is the case of real-world social networks. An extensive campaign of experiments confirms the effectiveness, efficiency, and scalability of our solution and shows that, if hub nodes were neglected, significant cliques would be undetected.
منابع مشابه
Large Maximal Cliques Enumeration in Large Sparse Graphs
Identifying communities in social networks is a problem of great interest. One popular type of community is where every member of the community knows all others, which can be viewed as a clique in the graph representing the social network. In several real life situations, finding small cliques may not be interesting as they are large in number and low in information content. Hence, in this pape...
متن کاملFinding All Maximal Connected s-Cliques in Social Networks
Cliques are commonly used for social network analysis tasks, as they are a good representation of close-knit groups of people. For this reason (as well as for others), the problem of enumerating, i.e., finding, all maximal cliques in a graph has received extensive treatment. However, considering only complete subgraphs is too restrictive in many real-life scenarios where “almost cliques” may be...
متن کاملExploiting the Formation of Maximal Cliques in Social Networks
In social networking analysis, there exists a fundamental problem called maximal cliques enumeration(MCE), which has been extensively investigated in many fields, including social networks, biological science, etc. As a matter of fact, the formation principle of maximal cliques that can help us to speed up the detection of maximal cliques from social networks is often ignored by most existing r...
متن کاملComputational Challenges with Cliques, Quasi-cliques and Clique Partitions in Graphs
During the last decade, many problems in social, biological, and financial networks require finding cliques, or quasi-cliques. Cliques or clique partitions have also been used as clustering or classification tools in data sets represented by networks. These networks can be very large and often massive and therefore external (or semi-external) memory algorithms are needed. We discuss four applic...
متن کاملCliques Role in Organizational Reputational Influence: A Social Network Analysis
Empirical support for the assumption that cliques are major determinants of reputational influence derives largely from the frequent finding that organizations which claimed that their cliques’ connections are influential had an increased likelihood of becoming influential themselves. It is suggested that the strong and consistent connection in cliques is at least partially responsible for the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016